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Based on the phonon Boltzmann equation, a lattice-Boltzmann model for phonon hydrodynamics is devel-
oped. Both transverse and longitudinal polarized phonons that interact through normal and umklapp processes
are considered in the model. The collision term is approximated by the relaxation time model where normal
and umklapp processes tend to relax distributions of phonons to their corresponding equilibrium distribution
functions—the displaced Planck distribution and the Planck distribution, respectively. A macroscopic phonon
thermal wave equation �PTWE�, valid for the second-sound mode, is derived through the technique of
Chapman-Enskog expansion. Compared to the dual-phase-lag �DPL� -based thermal wave equation, the PTWE
has an additional fourth-ordered spatial derivative term. The fundamental difference between the two models is
discussed through examining a propagating thermal pulse in a single-phased medium and the transient and
steady-state transport phenomena on a two-layered structure subjected to different temperatures at boundaries.
Results show that transport phenomena are significantly different between the two models. The behavior
exhibited by the DPL model, as thermal wave behavior goes over to diffusive behavior, �T→�q is incompatible
with any microscopic phonon propagating mode. Unlike the DPL model, in which �T only has an effect on the
transient phenomena, in the PTWE model �T shows effects on phenomena at both transient and steady state.
With the intrinsic compatibility to the microscopic state, discontinuous quantities, such as a jump of tempera-
ture at a boundary or at an interface, can be calculated naturally and straightforwardly with the present
lattice-Boltzmann method.
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I. INTRODUCTION

The transport of heat described by Fourier’s law has been
demonstrated to give rise to unreasonable results in several
situations. The anomaly is due to the assumption that the
heat flux vector and the temperature gradient occur at the
same instant of time; this leads to an infinite speed of heat
propagation �1�. Cattaneo �2� and Vernotte �3� proposed a
relaxation model to resolve this dilemma that results in the
wave-based hyperbolic heat conduction equation. A compre-
hensive literature survey of thermal waves can be found in
the review papers by Joseph and Preziosi �4,5� and by Ozisik
and Tzou �6�. Although the CVW �wave model proposed by
Cattaneo and Vernotte� remedies the paradox of the instanta-
neous response of thermal disturbance, it also introduces
some unusual solutions �7,8�.

Instead of the precedence assumption of the lead of the
temperature gradient to the heat flux, Tzou proposed a dual-
phase-lag �DPL� model that allows either the temperature
gradient to precede the heat flux or the heat flux to precede
the temperature gradient �9–11�. The heat conduction equa-
tion based on the DPL model is given by

�̂q
�2�̂

� t̂2
+

� �̂

� t̂
= �̂

�2�̂

� x̂2 + �̂�̂T
�3�̂

� x̂2 � t̂
, �1�

where �̂q represents the phase-lag time between the tempera-
ture gradient and the commencement of heat flow while �̂T is
the lag of the temperature gradient to the heat flow. This
model can reduce to diffusion, CVW, the phonon-electron
interaction, and the pure phonon scattering models under
suitable values of �̂q and �̂T. It thus can cover a wide range of
physical responses from microscopic to macroscopic scales
in both space and time. More recent research interests based
on the DPL model are summarized in our previous work of
lattice-Boltzmann modeling for the DPL-based heat conduc-
tion equation �12�.

The above review quickly portrays models for heat trans-
port from the macroscopic approach. Microscopically, trans-
port of energy in a dielectric solid is accomplished through
atomic vibrations that travel within the solid as waves. The
interatomic coupling present in a solid allows many different
vibrational modes that correspond to waves with different
frequencies. Just as the energy of an electromagnetic wave is
quantized, the energy of the waves can be quantized as
phonons and the solid medium can be treated as phonon gas.
The Boltzmann equation �Boltzmann-Peierls equation� is one
of the tools that is often used in the description of phonon
interactions, such as modeling for lattice thermal conductiv-
ity, phenomena of the second sound, and the Poiseuille flow
�13–19�. Depending on the relative strength of the normal
processes and resistive processes, the phonon propagation
can be classified as the following modes: ballistics, diffusion,
second sound, and heat conduction. These modes can be fur-
ther separated into two groups as the individual propagation
modes that include the ballistics and diffusion modes as well
as the collective propagation modes which cover the second
sound, and heat conduction modes �20�.

Thermal wave is the collective �or hydrodynamic� behav-
ior of the interacting phonon system that fits in the second-
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sound mode in which the normal processes strongly pre-
dominate. To study the nonlinear phonon hydrodynamic
behaviors, Guyer proposed a lattice-Boltzmann scheme to
model the phonon gas �21�. In this model, both transverse
and longitudinal types of phonons that interact with one an-
other through a three-phonon collision process were per-
formed on a two-dimensional hexagonal, the D2Q7 lattices.
Although several nonlinear phonon behaviors that were be-
yond description of the linearized phonon hydrodynamics
were successfully demonstrated, only the momentum con-
serving processes, the normal processes �N processes�, were
considered in this study. Most recently, Amon et al. em-
ployed the LBM to model the Boltzmann transport equation
of phonons for the simulation of conduction of heat for both
crystalline and amorphous materials at different time and
length scales. They demonstrated the transition of energy
transport from the regimes of diffusive to ballistic could be
well addressed by the phonon LBM model �22–24�.

Motivated by connecting the microscopic phonon interac-
tion modes to their corresponding macroscopic heat transfer
behaviors, the present study examines the heat conduction
equation from the phonon Boltzmann equation. Since N pro-
cesses alone cannot lead to finite heat conductivity, the um-
klapp processes �U processes� are included in the present
model as well. The connection between the phonon Boltz-
mann equation and the macroscopic heat conduction equa-
tion is established through the technique of the Chapman-
Enskog multiscale expansion. The obtained heat conduction
equation is then compared with the DPL-based heat conduc-
tion equation, Eq. �1�. The fundamental difference between
these two equations is discussed through two illustrative ex-
amples that concern propagating a heat pulse in a single-
phased medium and transient and steady-state transport phe-
nomena within a two-layered thin film structure subjected to
different temperatures at two boundaries.

II. LATTICE-BOLTZMANN MODELING
FOR PHONON GAS

In order to describe transport of heat, we consider the
wave packets of phonons of polarization � and group veloc-
ity ĉ� that can be localized in regions smaller than a charac-
teristic wavelength of the external thermal perturbation. All
interesting physical quantities can be obtained provided the

distribution functions f̂��t̂ , x̂ , ĉ� of phonons at position x̂ and

time t̂ are known. The evolution of f̂��t̂ , x̂ , ĉ� is assumed to
obey the Boltzmann equation

� f̂�

� t̂
+ ĉ��̂ f̂� = �� f̂�

�t
�

N
+ �� f̂�

�t
�

R
. �2�

The right-hand side of Eq. �2� represents contributions from
collisions where the first term comprises the normal pro-
cesses and the second term is the resistive part that includes
umklapp processes, impurity scattering, and boundary scat-
tering. In the present study, all such momentum-destroying

processes are designated as the U processes, thus �� f̂� /�t�R

is expressed as �� f̂� /�t�U.

A. Lattice-Boltzmann equation for phonons

The treatment of the collision term is based on the relax-
ation time approximation. Equation �2� is expressed as

� f̂�

� t̂
+ ĉ��̂ f̂� = −

1

�̂N

� f̂� − f̂��0�� −
1

�̂U

� f̂� − f̂0
��0�� , �3�

where the equilibrium distribution functions f̂��0� and f̂0
��0�

represent the displaced Planck distribution and Planck distri-
bution, respectively. The U processes tend to return the pho-
non system to an equilibrium Planck distribution, whereas
the N processes relax to a displaced Planck distribution �13�.
�̂N and �̂U are the relaxation times for the normal and um-
klapp processes. The phonon Boltzmann equation will be

nondimensionalized by the characteristic length scale L̂, ve-

locity scale Û, energy scale �̂, time between collisions t̂c,

and the reference density distribution functions f̂R, as

� f�

�t
+ c� � f� = −

1

	�N
�f� − f��0�� −

1

	�U
�f� − f0

��0�� , �4�

where c�= ĉ� / Û, �= L̂�̂ , t= t̂Û / L̂, �N,U= �̂N,U / t̂c, and 	

= t̂cÛ / L̂.
A two-dimensional physical space that consists of D2Q9

lattices is used in this study. As shown in Fig. 1, there are
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FIG. 1. Schematic diagram showing the D2Q9 lattice. There are
eight directions, designated as ei, i=1,2 , . . . ,8, in each lattice. The
direction e0 with zero phonon velocity is not considered. Polarized
phonon direction velocity ci

�, energy 
i
�, and momentum pi

� in each
direction are listed. �=0 and 1 represent transverse and longitudinal
phonons, respectively. c and 
 denote the unit speed and unit
energy.
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eight directions, designed as ei, i=1, . . . ,8, on each lattice.
Due to the zero phonon speed, the direction of e0 is not
considered. Both the thermal excited phonon polarization,
transverse and longitudinal phonons denoted, respectively, as
�=0 and 1, are considered. Hence, at each site there are 16
phonon states including eight transverse states and eight lon-
gitudinal states. At each state phonons propagate with veloc-
ity ci

�=c�ei, where c�= �1+��c and c is the magnitude of
unit speed. The energy at each state, 
i

�, is set as 
i
�

= �1+��
 for phonons in directions ei, i=1,2,3,4, and 
i
�

=2�1+��
 for directions ei, i=5,6,7,8. In these expressions,

 denotes the amount of unit energy. The phonon momentum
on each polarization is denoted as pi

�= pei, where we assume
the relation for phonon energy and phonon momentum fol-
lows 
i

�=pi
� ·ci

�, the regime where the Debye model is appro-
priate. The amount of unit momentum is thus given as p
=
 /c.

A discretization of Eq. �4� leads to the lattice-Boltzmann
equation for phonon gas �see Appendix A for the details�,

f i
��x + c�ei�t,t + �t� − f i

��x,t�

= −
1

�N
�f i

� − f i
��0�� −

1

�U
�f i

� − f0,i
��0�� . �5�

Define a combined relaxation time �C as 1 /�C�1 /�N+1 /�U.
Equation �5� can be written as

f i
��x + c�ei�t,t + �t� − f i

��x,t�

= −
1

�C
�f i

� − f i
��0�� −

1

�U
�f i

��0� − f0,i
��0�� . �6�

B. Equilibrium distribution functions

N processes conserve momentum and lead to the weighted
displaced Planck distribution function in the direction i as

f i
��0� =

wi
�

e��
i
�−pei·u� − 1

, �7�

where wi
� are the directional weights �see Appendix E�, �

=1 /kBT, kB is the Boltzmann constant, and u is the local drift
velocity of the phonon gas. U processes relax phonons to the
local equilibrium distribution, the Planck distribution. The
weighted Planck distribution function for direction i is

f0,i
��0� =

wi
�

e�
i
�

− 1
. �8�

The Planck distribution function is thus a special case of the
displaced Planck distribution function when the phonon drift
velocity u is zero.

When the medium, initially at equilibrium at temperature
T0 with the drift velocity u0=0, is subjected to a thermal
disturbance, a disturbed drift velocity u=u0+�u is initiated,
and the displaced Planck distribution function can be written
as

f i
��0� =

wi
�

exp��0
i
��1 − �� − �0
ei ·

�u

c
�1 − ��	 − 1

,

or, more compactly, as

f i
��0� =

wi
�

exp��0
i
��1 − �� − �0
ei · v�1 − ��� − 1

, �9�

where v is the normalized disturbed drift velocity, defined as
v=�u /c, and � is the perturbed temperature, �= ��0−�� /�0.
Here �0=1 /kBT0. � can also be expressed as �=�T /T, where
�T is the amount of temperature perturbation with respect to
the equilibrium temperature T0.

Define the directional equilibrium distribution function
for medium at v=0 and �=0 as

f̄0,i
��0� = �exp��0
i

�� − 1�−1, �10�

and expanding Eq. �7� based on Eq. �10� yields

f i
��0� = wi

�� f̄0,i
��0� − f̄0,i���0��0
i

�� − f̄0,i���0��0
ei · v + O��2�� ,

�11�

where O��2� represents the second-order perturbed terms,

i.e., O��2�=O��2 ,�v ,vv�, f̄0,i���0� is the first derivative of f̄0,i
��0�

with respect to �0
i
�, and mathematically it can be proven

that f̄0,i���0�=− f̄0,i
��0��1+ f̄0,i

��0��. Similarly, Eq. �8� can be ex-

pressed, based on Eq. �10�, as f0,i
��0�=wi

�� f̄0,i
��0�−�0
i

� f̄0,i���0���,
or

f i
��0� = f0,i

��0� − wi
� f̄0,i���0��0
ei · v . �12�

The second term on the right-hand side is the effect contrib-
uted from the momentum disturbance, thus Eq. �12� indicates
the displaced Planck distribution function can be approxi-
mated as the Planck distribution function plus the effect
caused by the disturbance of the drift velocity. In the lattice-
Boltzmann scheme, this term can be treated as an external
force term �25�. The above distribution functions can be
evaluated provided that � and v are prescribed, which should
be calculated from the energy and momentum equations.

The macroscopic physical quantities, energy density E,
momentum density vector P, heat flux vector Q, and mo-
mentum flux tensor B��, are averages through the phonon
distribution functions that are given as

E = 

i,�


i
�f i

�, �13�

P� = 

i,�

pei,�f i
�, �14�

Q� = 

i,�


i
�c�ei,�f i

�, �15�

B�� = 

i,�

pei,�c�ei,�f i
�. �16�
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C. Chapman-Enskog expansion

Relations between the microscopic lattice-Boltzmann
equation and the conservation laws that govern the macro-
scopic quantities can be established through the Chapman-
Enskog expansion. In this expansion the particle distribution
functions f i

� and f0,i
��0� are expanded with respect to the dis-

placed Planck distribution function f i
��0�, up to the second

order of the expansion parameter 	 as

f i
� = f i

��0� + 	f i
��1� + 	2f i

��2� + O�	3� , �17�

and

f0,i
��0� = f i

��0� + 	f0,i
��1� + 	2f0,i

��2� + O�	3� . �18�

Comparing Eq. �18� with Eq. �12�, we have f0,i
��1�

=wi
� /	��0	 f̄0,i���0�ei ·v� and f0,i

��2�=0. Substituting Eq. �17� into
Eqs. �13�–�16�, and separating the macroscopic quantities
into two parts, the equilibrium part that is contributed by
f i

��0�, and the nonequilibrium part, which is caused mainly by
the first-order term f i

��1�, yields

E = E�eq� + 	E�neq� = 

i,�


i
�f i

��0� + 	

i,�


i
�f i

��1�, �19�

P� = P�
�eq� + 	P�

�neq� = 

i,�

pei�f i
��0� + 	


i,�
pei�f i

��1�, �20�

Q� = Q�
�eq� + 	Q�

�neq� = 

i,�


i
�c�ei�f i

��0� + 	

i,�


i
�c�ei�f i

��1�,

�21�

and

B�� = B��
�eq� + 	B��

�neq� = 

i,�

pei�c�ei�f i
��0� + 	


i,�
pei�c�ei�f i

��1�.

�22�

The equilibrium portions of these macroscopic quantities can
be obtained by substituting Eq. �9� into Eqs. �19�–�22� as

E�eq� = 

i,�


i
�f i

��0� = E0 + M1� , �23�

P�
�eq� = 


i,�
pei�f i

��0� = pM2���v�, �24�

Q�
�eq� = 


i,�

i

�c�ei�f i
��0� = M3���v�, �25�

and

B��
�eq� = 


i,�
pei�c�ei�f i

��0� = B0��� +
p



M3���� , �26�

where the coefficients M1, M2, and M3 are presented in Ap-
pendix B. These expressions only relate the equilibrium mac-
roscopic quantities to temperature and velocity variations. To
obtain the nonequilibrium parts, the function of f i

��1� should
be calculated.

The expansion of f i
��x+ci

�ei�t , t+�t� up to O��t2� gives

f i
��x + c�ei�t,t + �t� = f i

��x,t� + �t�t f i
� + �tc�ei��x�

f i
�

+
��t�2

2
��t�t f i

� + 2c�ei��t�x�
f i

�

+ �c��2ei�ei
�x�
�x


f i
�� + O��t3� .

�27�

Two time scales and one spatial scale that are involved for
the change of quantities are introduced as �26�

�t = 	�t�1� + 	2�t�2�, �28�

�x�
→ 	�x

�
�1�. �29�

Substituting Eqs. �17�, �18�, and �27�–�29� into Eq. �6�, the
resulting equations to O�	� and O�	�2 are given as Eqs. �C3�
and �C4�, which are shown in Appendix C. Multiplying each
term of Eq. �C3�, respectively, by 
i

� and pei,�, and summa-
rizing all terms over all phonon states, yields the equilibrium
energy and momentum equations as

�t�1�E�eq� + �x
�
�1�Q�

�eq� = 0, �30�

and

�t�1�P�
�eq� + �x

�
�1�B��

�eq� = −
1

	�t�U
P�

�eq�. �31�

The right-hand side of Eq. �31� is a “sink” of momentum that
results from the resistive U processes.

The nonequilibrium distribution functions f i
��1� can be ex-

pressed as �see Appendix D for the details�

f i
��1� = �i

+ + �i
−, �32�

where �i
+ and �i

− are given as

�i
+ = − �t�C�wi

��0
i
� f̄0,i���0��M3

M1
��
�

− wi
��0
c� f̄0,i���0�ei
ei�	�x


�1�v�, �33�

�i
− = − �t�C�wi

��0
 f̄0,i���0�� M3


M2
�ei���


− wi
��0
i

�c� f̄0,i���0�ei
	�x


�1�� . �34�

Using the fact the odd-numbered velocity tensors �that aver-
ages with respect to the equilibrium distribution function
having an odd number of velocities� are zero, we have



i,�


i
��i

− = 0 and 

i,�

pei,��i
+ = 0. �35�

Additional relations for �i
+ and �i

− are presented by Eqs.
�D4� and �D5� as
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i,�


i
��i

+ = 0 and 

i,�

pei,��i
− = 0. �36�

Substituting Eq. �32� into Eqs. �19�–�22� yields the nonequi-
librium quantities

E�neq� = 

i,�


i
�f i

��1� = 

i,�


i
���i

+ + �i
−� = 0, �37�

P�
�neq� = 


i,�
pei�f i

��1� = 

i,�

pei���i
+ + �i

−� = 0, �38�

Q�
�neq� = 


i,j,�

i

�c�ei�f i
��1� = − �t�C�− �M3�2


M2
+ M4	��
�x


�1�� ,

�39�

and

B��
�neq� = 


i,�
pei�c�ei�f i

��1�

= − p�t�C�−
�M3�2


M1
����
�

+ M5�����
� + ��
��� + �����
�	�x


�1��v�, �40�

where coefficients M4 and M5 are also given in Appendix B.
Equations �37�–�40� indicate the nonequilibrium distribution
functions f i

��1� make no contributions to quantities E and P,
but they do affect heat flux vector Q and momentum flux
tensor B��.

Substituting Eq. �32� into Eq. �C4�, the energy and mo-
mentum equations to O�	2� are obtained as the following:

�t�2�E�eq� −
1

2	�U
�x

�
�1�Q�

�eq� + �1 −
1

2�U
��x

�
�1�Q�

�neq� = 0,

�41�

and

−
1

2	�U
�t�1�P�

�eq� + �t�2�P�
�eq� + �1 −

1

2�u
��x

�
�1�B��

�neq� = 0.

�42�

The whole conservation equations of energy and momentum
are obtained as the following. �	 ·Eq. �30�+	2 ·Eq. �41��
gives the energy equation as

�tE
�eq� + �1 −

1

2�U
��x�

Q�
�eq� + �1 −

1

2�U
��x�

	Q�
�neq� = 0,

�43�

and �	·Eq. �31�+	2·Eq. �42�� represents the momentum equa-
tions

�1 −
1

2�u
��tP�

�eq� + �x�
B��

�eq� + �1 −
1

2�u
��x�

	B��
�neq�

+
1

�t�U
P�

�eq� = −
1

2	�U
	3�t�2�P�

�eq�. �44�

Equations �14�, �24�, and �38� indicate the phonon drift
velocity can be expressed as P�=
i,�pei,�f i

�=
i,�pei,�f i
��0�

= pM2���v�, or

v� = ����

i,�

pei�f i
�/pM2	 . �45�

Similarly, Eqs. �13�, �23�, and �37� lead to the expression of
temperature � as

� = �

i,�


i
�f i

� − E0�/M1. �46�

Once v and � are obtained, substituting Eqs. �45� and �46�
into Eq. �9� completes the calculation of the displaced Planck
distribution functions f i

��0�.

D. Macroscopic equations and thermal wave equation

Equations �43� and �44� can be expressed in terms of �
and v to O�	2� as

�t� = − �1 −
1

2�U
��M2

M1
� � · v + �C� �− VI

2 + VII
2 ��2� ,

�47�

and

�tv = − �1 −
1

2�U
�−1 M3


M2
� � + �1 −

1

2�U
�−1

��C� �VIII
2 �2v + �− VI

2 + VIII
2 � � �� · v�� −

1

�U�
v . �48�

Equations �47� and �48�, obtained through the Chapman-
Enskog expansion technique based on the D2Q9 lattice, are
consistent with the energy and momentum equations ob-
tained by Hardy from the linear phonon Boltzmann equation
�18�. Combining Eqs. �47� and �48� through eliminating the
variable v yields the final expression that is expressed in
terms of � as

�2�

�t2 +
1

�U�

��

�t
= VSS

2 �2� + �C�USS
2 �

�t
�2� − �C�

2CSS
4 �4� .

�49�
Coefficients in these expressions are summarized as

�U� = �t��U − 0.5� , �50�

�C� = �t��C − 0.5� , �51�

VI = � �M3�2


M1M2
	1/2

, VII = �M4

M1
�1/2

, VIII = �M5

M2
�1/2

,

�52�

VSS = �VI
2 − � �C�

�U�
�VI

2 + � �C�

�U�
�VII

2	1/2

, �53�
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USS = ��1 −
1

2�U
�−1

�− VI
2 + 3VIII

2 � + �− VI
2 + VII

2 �	1/2
,

�54�

and

CSS = ��1 −
1

2�U
�−1

�− VI
2 + 3VIII

2 ��− VI
2 + VII

2 �	1/2
. �55�

Equation �49� describes the propagation of a thermal distur-
bance based on the phonon Boltzmann equation. Hereafter, it
is named as the phonon thermal wave equation, abbreviated
as PTWE, for later discussion.

III. RESULTS AND DISCUSSION

Although the particle-based phonon Boltzmann equation
describes both “individual” and “collective” behaviors of
phonon interactions, the PTWE, Eq. �49�, is derived under
the assumption of small disturbances; i.e., phonons at all
states deviate slightly from the equilibrium �displaced�
Planck distributions. Implicitly, it is assumed there is enough
time for an equilibrium distribution to be established; i.e., the
nonequilibrium state of the phonon system can be com-
pletely described by the collective variables � and v.

The thermal wave equation based on the DPL model, Eq.
�1�, is written in the following dimensionless form:

�2�

�t2 +
1

�q

��

�t
=

�

�q

�2�

�x2 + �
�T

�q

�

�t

�2�

�x2 . �56�

Casting to the same form of Eq. �56�, the PTWE is rewritten
as

�2�

�t2 +
1

�U�

��

�t
= Vss

2 �2�

�x2 + �C�USS
2 �

�t

�2�

�x2 − �C�
2CSS

4 �4�

�x4 . �57�

For the purpose of comparison and discussion, terms and
parameters employed in the DPL model are taken on for later
discussion. By drawing an analogy between Eqs. �56� �57�,
Eq. �57� is reexpressed as

�2�

�t2 +
1

�q

��

�t
=

�

�q

�2�

�x2 + �
�T

�q

�

�t

�2�

�x2 − �Css

Uss
�4��T

�

�q
�2�4�

�x4 .

�58�

Correspondence of parameters for the DPL-based equation
and the PTWE are shown in Table I. Comparing Eq. �58�
with Eq. �56�, the third term on the right-hand side of Eq.
�58�, derived with respect to space to the fourth order, is the
newly introduced term from the hydrodynamic approxima-
tion of the phonon Boltzmann equation. An analysis of �q
and �T indicates that both equations reduce to the diffusion
model employing Fourier’s law as �q approaches zero. For
finite �q, they both move toward the CVW equation as �T
approaches zero. Thus, the effect of the fourth-order spatial
derivative term in the PTWE is considerable when �q and �T
are both finite. Besides, the second-sound mode, i.e., the
propagation of temperature fluctuations as waves, emerges
when N processes are the predominant mechanism. The rela-
tively large values of �q to �T should be implemented to
fulfill this requirement. Therefore, in the following illustra-
tive examples, numerical values for �q and �T are set such
that �T is relatively smaller than �q but is still finite. The
detailed numerical values for parameters used in calculations
are presented in Table II.

The first illustrative example concerns the propagation of
a thermal wave in a single-phased medium induced by im-
posing a sudden impulsive volumetric heat source between
0�x�0.05 at t=0. An adiabatic boundary condition was
imposed at x=0 �12�. Numerical values for parameters
are given as �T=5.974 967�10−4, �q=1.0, and �=9.0021
�10−1. Figure 2 shows distributions of temperature at three
different times. The solid lines represent the results for the
PTWE calculated by the present lattice-Boltzmann scheme
and the dot points show solutions for Eq. �56�. The thermal
pulse propagates to the right at a speed of 0.95. As time
evolves, due to the dissipation mechanism, the strength of
the pulse is decreased and the width of the pulse is increased.

TABLE I. Correspondence of parameters between Eqs. �56� and
�58�.

DPL-based equation PTWE

�q �U�

�T �Uss /Vss�2�C�

� �U� Vss
2

V Vss

TABLE II. Numerical values for parameters employed in calculations.

�N �U �T �q � V=�� /�q

0.8 1000.5 3.584 999�10−4 1.000000047 9.002 119 121 3�10−1 0.94879498

1 1000.5 5.974 967�10−4 1.000000047 9.003 372 491 3�10−1 0.94886103

10 1000.5 1.118 721�10−2 1.000000047 9.059 260 636 8�10−1 0.95180148

20 1000.5 2.258 657�10−2 1.000000047 9.120 202 416 7�10−1 0.95499751

25 1000.5 2.814 705�10−2 1.000000047 9.150 227 608 5�10−1 0.95656822

40 1000.5 4.429 822�10−2 1.000000047 9.238 571 794 0�10−1 0.96117489

50 1000.5 5.464 452�10−2 1.000000047 9.296 066 296 4�10−1 0.96416110

100 1000.5 1.018 722�10−1 1.000000047 9.567 865 613 8�10−1 0.978115
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For this case, the macroscopic contribution from the fourth-
ordered spatial derivative term of PTWE is trivial, i.e., Eq.
�58� converges to Eq. �56�, thus, very good agreement be-
tween the two results is observed. However, with the in-
crease of �T the contribution from the fourth-ordered spatial
derivative term to the PTWE becomes more important and
the deviation between these two equations turns out to be
significant.

Figures 3�a� and 3�b� show, respectively, the effect of �T
on the temperature distribution-based Eqs. �58� and �56� at a
particular time of t=0.3. Except for �T, all parameters are
kept the same as they were for Fig. 2. As �q is fixed, an
increase of �T means a reduction in the strength of N pro-
cesses, which results in an increase of the pulse width and a
reduction in the pulse strength. It is noted that although the
corresponding second-sound speeds are set the same for
these two equations, with an increase of �T, the positions of
the peak value of thermal pulse shift toward the left of the x
axis in Fig. 3�b�. In Fig. 3�a�, these peak positions can be
kept at x=Vsst. Depending on the relative magnitudes of �T
and �q, characteristics of thermal wave within the framework
of the DPL model can be discussed in three categories: �T
=�q, �T��q, and �T��q �9�. For �T=�q, the DPL model re-
duces to the diffusion model employing Fourier’s law. For
�T��q, due to the heat flux vector preceding the temperature
gradient in the process of heat transfer, the DPL model pre-
dicts a stronger diffusive effect than Fourier’s law does.
When �T��q, the DPL model indicates the wave character-
istics are in-between those of the CVW model and Fourier’s.
The present cases are for �q��T, thus, as �T is approaching
�q, the mode should switch from thermal wave to diffusion.
This development appears exactly in Fig. 3�b�. As �T is in-
creased and becomes close to �q, the position of the peak
value is shifted toward x=0, where the maximum tempera-
ture would occur if the Fourier law for diffusion is em-
ployed.

Figure 3�a� indicates, as �T increases, the PTWE does not
move to the Fourier diffusion model. The fourth-ordered spa-

tial derivative term in the PTWE prevents this reduction.
According to the phonon propagating modes �20�, for large
values of �q, as �T is increased gradually from a small value
to �q, the phonon interaction mode is switching from the
second sound to the ballistics that is beyond the description
of the PTWE. In Fig. 3�a�, curve a to curve d are within the
frame of PTWE. With the increase of �T and getting closer to
�q, the ballistic propagating mode is observable from curve e,
where the longitudinal polarized phonons and transverse po-
larized phonons propagate with different speeds. The propa-
gating modes of phonons indicate that reducing from the
second-sound mode to the diffusion mode can only be ac-
complished through the reduction of �q, i.e., increasing the
strength of U processes. An increase of �T, meaning a reduc-
tion of the strength of N processes, does enhance the effect
of diffusion that results in broadening the width of the ther-
mal pulse for the present case. It, however, cannot solely lead
to the switch from the second-sound mode to the diffusion
mode. In the DPL model, however, the increase of �T not
only broadens the width of the thermal pulse but also pushes
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FIG. 2. Temperature distributions, subjected to a suddenly im-
posed pulsed volumetric heat source around x=0, in a single-phased
medium, at times t=0.1, 0.3, and 0.5. The solid lines and dot points
are the results based on the PTWE model and the DPL model,
respectively. Numerical values for parameters are given as �T

=5.974 967�10−4, �q=1.0, and �=9.0021�10−1.
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FIG. 3. Temperature distributions for different �T at a particular
time t=0.3. �a� shows the results from the present lattice-Boltzmann
model. �b� indicates the results based on the DPL model. Compu-
tational conditions and numerical values of parameters, except for
�T, are set the same as they were for Fig. 2.
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the wave mode toward the Fourier diffusion mode. The fun-
damental mechanisms of the reduction from the second-
sound mode to the diffusion mode for these two models are
thus different. Although it is claimed that the DPL model has
the same form as the energy equation in the phonon scatter-
ing model �9�, the DPL model cannot exactly represent the
elementary phonon propagating modes.

The second illustrative example considers the fundamen-
tal difference in transport phenomena, both transient and
steady state, in a two-layered thin film structure. Consider a
thin film that is in the extent of 0�x�1 and is composed of
layer I and layer II. Layer I is in 0�x�0.5 and layer II is in
0�x�0.5. These two layers are connected ideally at x
=0.5. Initially, the temperature of the whole film is uniform
at �=0. At time t=0+, the temperature at x=0 is raised to
�=1, while the temperature at x=1 is kept at �=0. The pa-
rameters are set as �qI=�qII=1, �TI

=3.585�10−4, �TII
=5.464�10−2, �I=0.900, and �II=0.9296. Transport phe-
nomena based on the DPL model are first discussed.

Figure 4 shows temperature distributions for Eq. �56�
within the thin film at several times. The temperature distur-
bance is mainly confined to layer I for a time smaller than
0.5 and it reaches the layer interface around t=0.5. After
that, as time keeps evolving, part of the energy penetrates the
interface into layer II and part of the energy is reflected back
to layer I. Since �TII

is larger than �TI
, the interface is able to

reflect a relative minus wave back to layer I. As time evolves
to t=0.6 and 0.8, the reflected temperature pulse in layer I
moves continuously back to x=0 and the penetrated energy
makes the temperature in layer II increase. As time reaches
t=1.0, both the reflected wave in layer I and the penetrated
wave front in layer II reach boundaries at x=0 and x=1. As
time keeps increasing, the wall at x=0 reflects a positive
wave back to layer I, and the wall at x=1 reflects a negative
wave back to layer II that passes the “cooling” into the film.
These two reflected waves meet each other at layer interface
around time t=1.55. The waves keep being dissipated and
spreading as propagation continues and become more and
more unclear. At steady state the temperature distribution is
very close to a straight line in the whole film. This is because
for the present case the difference between �I and �II is very
small and a discrepancy in �T of the two layers makes no
contribution to the steady-state response. This is an expected
result since Eq. �56� reduces to �2� /�x2=0 as t→�. The
material property �T thus only affects heat transfer at tran-
sient time but plays no role at all at steady state. Some trans-
port phenomena of transmission reflection at an interface
based on the DPL model were discussed in our previous
work �12�.

A history of temperature at the layer interface is presented
in Fig. 5. The interface temperature based on the DPL model,
denoted as �int

DPL, shows the interface is almost undisturbed
until the arrival of heat disturbance. It then increases rapidly
at the duration as the front of temperature rising is passing
through the interface, t=0.5 to 0.6, then increases slowly to
the maximum value around t=1 at which the thermal wave
arrives, x=1. Thus at this stage, �0� t�1�, the temperature
increase at the interface is due to the “heating” from the wall
at x=0. At the second stage, �1� t�2�, the interface tem-
perature decreases from maximum to a minimum around

t=2. This cooling is due to the reflected wave from the cold
wall at x=1. It is noted there is a little “rebound,” circled in
Fig. 5, occurring during t=1.5−1.6. This is a result from the
positive wave reflecting from the heating wall that is passing
through the interface at this duration �see the temperature
distribution curve at t=1.55 in Fig. 4�. At the third stage,
2� t�3, interface temperature increases and then decreases
at the fourth stage, 3� t�4. This oscillation maintains the
same period until it is indistinguishable. The rebound at the
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FIG. 4. Temperature distributions, based on the DPL model, at
different times in a two-layered thin film structure subjected to
boundary conditions �=1 and �=0 at x=0 and x=1, respectively.
�a� shows the temperature distributions for times at t=0.1, 0.5, 0.6,
and 0.8. �b� shows the temperature distributions for times at t=1.2,
1.55, 2.0, and 3.0 as well as t→�.
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second stage still appears at the third stage but becomes un-
detectable by the fourth stage.

Results for PTWE based on the present lattice-Boltzmann
scheme, however, show considerably different trends from
those based on the DPL model. Figure 6 shows temperature
distributions within the film at several times. A temperature
jump occurring at x=0 can be clearly observed. As time
evolves, temperature at x=0+ first increases fast, then, with
the decrease of the temperature difference between the film
and the boundary, the rate of the increase is gradually re-
duced until the steady state is reached. This jump at bound-
ary, due to the fact that distribution functions for phonons are
different at boundary and within the film, is naturally formed
using the present lattice-Boltzmann scheme. The degree of
the jump depends on the strength of N processes. For stron-
ger N processes collisions among phonons relax the distribu-
tion function more toward the displaced Planck distribution.
Since the wall is assumed at the Planck distribution, the dif-
ference of drift velocity makes the temperature jump at the
boundary. On the contrary, for stronger U processes, the
more frequent phonon resistive scattering makes the distri-
bution of phonons closer to the “driftless” Planck distribu-
tion, which results in a more continuous temperature distri-
bution at the boundary. For the Fourier model, phonon
interactions are only through the U processes; no tempera-
ture jump would occur for an ideal boundary.

Figure 6 further shows as the wave front of the tempera-
ture pulse arrives at the layer interface, a second temperature
jump occurs there. A third jump then appears as the penetra-
tion wave in layer II reaches the film’s other boundary at x
=1. Unlike the DPL model that reflects a relative negative
wave, the interface here reflects a relative positive wave.

Although its magnitude is small, this “swelling” is still de-
tectable �see the circled regions on the curves for times at t
=0.6 and 0.8�. The opposite sign in the reflected wave from
the layer interface is more evidence concerning the funda-
mental differences of wave characteristics between the two
considered models. Reflecting a negative wave from the
layer interface is usually unfavorable because a thermody-
namic state with negative temperature, which is physically
unreal, is achievable at a low temperature due to the negative
wave. A temperature jump at the layer interface as a function
of time is also presented in Fig. 5. �int

− and �int
+ represent

temperatures of the lattice points that are closest to the layer
interface and are sited, respectively, in layer I and layer II.
The jump commences as the thermal front of temperature
rising arrives at the interface, increases quickly during the
wave front penetrating the interface, and decreases gradually
after the penetration. Compared to the trend of �int

DPL, �int
− and

�int
+ have no observable oscillations but there exists a finite

temperature difference at steady state. The temperature dis-
tribution at steady state, shown in Fig. 6, is not a straight
line. This can be further confirmed from Eq. �58�. As t→�,
Eq. �58� is reduced to

�2�

�x2 − �Css/Uss�4�T
2�/�q

�4�

�x4 = 0,

or simply,

� − �Css/Uss�4�T
2�/�q

�2�

�x2 = const.

This expression shows that the material property �T affects
not just the transient behavior but also the steady-state re-
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FIG. 5. History of temperatures at the layer interface. �int
DPL is the

temperature based on the DPL model while �int
− and �int

+ are tem-
peratures from the PTWE and represent the interface temperatures
from layer I and layer II, respectively. The circled regions indicate
the times occurring with observable temperature rebounds. Bound-
ary conditions are the same as they were in Fig. 4.
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FIG. 6. Temperature distributions, based on the PTWE, in a
two-layered thin film structure for times at t=0.1, 0.5, 0.6, 0.8, and
1.2 as well as t→�. Two slight “swellings,” circled on the curves at
t=0.6 and t=0.8, show the observable reflected positive thermal
waves from the layer interface. Boundary conditions are the same
as they were in Fig. 4.
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sponse. This provides another fundamental difference be-
tween the two considered models.

Distributions of drift velocity and heat flux within the film
at times corresponding to Fig. 6 are shown in Figs. 7 and 8.
The drift velocity first is continuous in layer I, then a jump at

the layer interface is formed as the front of temperature ris-
ing passes through the interface. Discontinuity in the drift
velocity at boundaries and at the interface leads to the shift
of phonon distribution functions that results in a temperature
jump. The circled regions on the curves for times at t=0.6
and 0.8 in Fig. 7 show that the layer interface reflects a
detectable “minus” velocity disturbance in the drift velocity
that is responsible for the slight “swelling” in Fig. 6. Al-
though temperature is discontinuous at the interface, Fig. 8,
however, shows a continuous heat flux is always satisfied.
Compared to the continuity of temperature, the continuity of
heat flux is the primary condition to fulfill for the conserva-
tion of energy principle at the interface. With the advantage
of a distribution-function-based Boltzmann equation, a tem-
perature jump at the boundary and at the layer interface, can
be calculated naturally and straightforwardly using the
lattice-Boltzmann scheme, providing material properties in
the two layers and the boundary conditions are prescribed.

IV. CONCLUSIONS

In this study, a hydrodynamic approximation to a phonon
Boltzmann equation is accomplished through the lattice-
Boltzmann method. Both the thermal excited transverse and
longitudinal phonons that interact through normal �N� and
umklapp �U� processes are considered. The collision term in
the Boltzmann equation is approximated by the relaxation
time model with two constants �U and �N that represent the
times required for U and N processes to relax the distribu-
tions of phonons to their corresponding equilibrium distribu-
tion functions—the Planck distribution and the displaced
Planck distribution, respectively. Through the technique of
Chapman-Enskog expansion, a macroscopic thermal wave
equation that is valid for the phonon collective, second-
sound mode is obtained.

Compared to the thermal wave equation based on the
dual-phase-lag �DPL� model, mathematically the macro-
scopic phonon thermal wave equation �PTWE� has an addi-
tional term for a fourth-ordered derivative in space. The fun-
damental difference of wave characteristics between the two
models is discussed through two illustrative examples. One
illustrates a propagating thermal pulse in a single-phased me-
dium; the other demonstrates both transient and steady-state
transport phenomena in a two-layered thin film structure sub-
jected to different fixed temperatures at boundaries. Besides,
to fulfill the requirement for the second-sound mode, numeri-
cal values for �q and �T are set such that �T is relatively
smaller than �q but is still noticeable.

The thermal wave equation based on the DPL model is
reduced to the diffusion model based on Fourier’s law
through either reducing �q to zero, or �T approaches �q at
finite �q. Phonon propagating modes, however, indicate that
switching from the second-sound mode to the diffusion mode
can only be accomplished through reducing �q to zero. Thus,
a reduction from the wave mode to the diffusion mode
through the later path claimed in the DPL model, �T ap-
proaching �q, finds no compatible microscopic propagating
modes. That is, missing of the fourth-ordered spatial deriva-
tive term in the DPL model fundamentally leads to improper
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FIG. 7. Distributions of the phonon drift velocity, based on the
PTWE, in a two-layered thin film structure for times at t=0.1, 0.5,
0.6, 0.8, and 1.2 as well as t→�. Two slight “dents,” circled on the
curves at t=0.6 and t=0.8, show the observable reflected negative
velocity disturbances from the layer interface that correspond to the
circled reflected thermal waves in Fig. 6. Boundary conditions are
the same as they were in Fig. 4.
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FIG. 8. Distributions of heat flux, based on the PTWE, in a
two-layered thin film structure for times at t=0.1, 0.5, 0.6, 0.8, and
1.2 as well as t→�. The circled regions placed on the curves at t
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direction in mode reduction from the thermal wave to diffu-
sion.

The DPL mode shows, for a two-layered structure in
which �TI

��TII
, the layer interface reflects a relative minus

wave as an increasing temperature front is coming and the
interface temperature oscillates periodically with damping
until steady state. The steady-state response based on the
DPL model is exactly the same as that of the diffusion
model. A difference in �T thus only affects the process in
transient. Furthermore, for an ideal contact, temperature is
always continuous at the interface; thermal resistance at the
interface due to material difference is unclear. Unlike the
DPL model, the solution of PTWE shows the interface re-
flects a positive wave and �T affects both the process of
transient as well as the response at steady state. With its
advantage of description phenomena in microscopic scale,
temperature jumps at the boundary and the interface can be
calculated naturally and straightforwardly by the present
lattice-Boltzmann method once material properties and
boundary conditions are set.
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APPENDIX A

The velocity space is discretized by introducing a finite
set of velocities ci

�, and the corresponding distribution func-
tion is discretized as f i

��x , t�. The discrete phonon Boltzmann
equation that corresponds to Eq. �4� is given as

� f i
�

�t
+ ci

� � f i
� = −

1

�N	
�f i

� − f i
��0�� −

1

�U	
�f i

� − f0,i
��0�� .

�A1�

The dimensionless parameters are introduced in Sec. II A. A
discretization of Eq. �A1� is given by

f i
��x,t + �t� − f i

��x,t�
�t

+ cix
� f i

��x + �x,t + �t� − f i
��x,t + �t�

�x

+ ciy
� f i

��x + �y,t + �t� − f i
��x,t + �t�

�y

= −
1

�N	
�f i

� − f i
��0�� −

1

�U	
�f i

� − f0,i
��0�� , �A2�

where �t=�t̂Û / L̂. Lagrangian behavior is then obtained by
the selection of the lattice spacing as �x� /�t=cix

� , which
yields

f i
��x,t + �t� − f i

��x,t�
�t

+
f i

��x + c�ei�t,t + �t� − f i
��x,t + �t�

�t

=
f i

��x + c�ei�t,t + �t� − f i
��x,t�

�t

= −
1

�N	
�f i

� − f i
��0�� −

1

�U	
�f i

� − f0,i
��0�� . �A3�

Choosing �t= tc, multiplying Eq. �A4� by �t, leads to the
lattice phonon Boltzmann equation given by Eq. �5�.

APPENDIX B

Definitions for parameters that are frequently used in for-
mulations in this study are as follows:

M1 = −
1

2�
�

4w1→4
� �0�
1→4

� �2 f̄0,1→4���0�

+ 4w5→8
� �0�
5→8

� �2 f̄0,5→8���0� 	 , �B1�

M2 = −
1

2�
�

2w1→4
� �0
 f̄0,1→4���0� + 4w5→8

� �0
 f̄0,5→8���0� 	 ,

�B2�

M3 = −
1

2�
�

2w1−4
� �0

1→4

� c� f̄0,1→4���0�

+ 4w5→8
� �0

5→8

� c� f̄0,5→8���0� 	 , �B3�

M4 = −
1

2�
�

2w1→4
� ��0
1→4

� c��2 f̄0,1→4���0�

+ 4w5→8
� ��0
1→4

� c��2 f̄0,1→4���0� 	 , �B4�

M5 = −
1

2�
�

4w5→8
� �0
�c��2 f̄0,5→8���0� 	 . �B5�

APPENDIX C

Substituting Eqs. �17�, �18�, and �27�–�29� into Eq. �6�
yields

0 = 	�t��t�1�f i
��0� + c�ei,��x

�
�1�f i

��0�� + 	2�t��t�1�f i
��1� + �t�2�f i

��0�

+ c�ei,��x
�
�1�f i

��1�� + 	2 ��t�2

2
���t�1��t�1�f i

��0�

+ 2c�ei,��t
�1��x�

�1�f i
��0� + �c��2ei,�ei,
�x

�
�1��x



�1�f i

��0��

+
1

�C
�	f i

��1� + 	2f i
��2�� +

1

�U
�f i

��0� − f0,i
��0� − 	f0,i

��1��

+ O��t3� + O�	3� . �C1�

The terms in Eq. �C1� are regrouped according to the power
of 	. O�	0� gives

0 = f i
��0� − f i

��0�. �C2�

O�	1� shows
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0 = �t�1�f i
��0� + c�ei,��x

�
�1�f i

��0� +
1

�t�C
fi

��1� −
1

�t�U
f0,i

��1�.

�C3�

O�	2� is

0 = �t�1�f i
��1� + �t�2�f i

��0� + c�ei,��x
�
�1�f i

��1� +
�t

2
�t�1��t�1�f i

��0�

+ �tc�ei,��t�1��x
�
�1�f i

��0� +
�t

2
�c��2ei,�ei,
�x

�
�1��x



�1�f i

��0�

+
1

�t�C
fi

��2�. �C4�

APPENDIX D

From Eq. �C3�, f i
��1� can be expressed as

f i
��1� = − �t�C�t�1�f i

��0� − �t�Cc�ei,��x
�
�1�f i

��0� +
�C

�U
f0,i

��1�.

�D1�

Expressing f i
��1� in terms of � and v gives

f i
��1� = �t�Cwi

��0
i
� f̄0,i���0��t�1�� + �t�Cwi

��0	 f̄0,i���0�ei,��t�1�v�

+ �t�Cwi
�c��0
i

� f̄0,i���0�ei,
�x


�1��

+ �t�Cwi
�c��0
 f̄0,i���0�ei,
ei,��x



�1�v�

+
�C

	�U
wi

��0
 f̄0,i���0�ei,�v�. �D2�

To express the effect of spatially inhomogeneous terms,
substituting Eqs. �30� and �31� into Eq. �D2� to take off
terms, including a derivative with respect to time, yields

f i
��1� = − �t�Cwi

��0
i
� f̄0,i���0��M3

M1
��
��x



�1�v�

− �t�Cwi
��0
 f̄0,i���0�ei��� M3

bM2
���
�x



�1�� +

1

	�t�U
v�	

+ �t�Cwi
�c��0
i

� f̄0,i���0�ei
�x


�1��

+ �t�Cwi
�c��0
 f̄0,i���0�ei
ei��x



�1�v�

+
�C

	�U
wi

��0
 f̄0,i���0�ei�v�. �D3�

Let f i
��1�=�i

++�i
−, where

�i
+ = − �t�C�wi

��0
i
� f̄0,i���0��M3

M1
��
�

− wi
��0
c� f̄0,i���0�ei
ei�	�x


�1�v�, �33�

�i
− = − �t�C�wi

��0
 f̄0,i���0�� M3


M2
�ei���


− wi
��0
i

�c� f̄0,i���0�ei
	�x


�1�� . �34�

It can be shown that



i�


i
��i

+ = − �t�C

i�
�wi

��0�
i
��2 f̄0,i���0��M3

M1
��
�

− wi
��0

i

�c� f̄0,i���0�ei
ei�	�x


�1�v�

= − �t�C�− M1�M3

M1
��
� + M3�
�	�x


�1��v� = 0,

�D4�

and



i�

pei��i
− = − �t�Cp�


i�

wi
��0
 f̄0,i���0�� M3


M2
�ei�ei���


− 

i�

wi
��0
i

�c� f̄0,i���0�ei�ei
	�x


�1���

= − �t�Cp�− M2� M3


M2
������


+ �M3


 ���
	�x


�1���

= − �t�Cp�− �M3


 ���
 + �M3


 ���
	�x


�1��� = 0.

�D5�

APPENDIX E: DERIVATION OF THE WEIGHTING
FACTOR wi

�

Based on the D2Q9 lattice, tensors of rank two and rank
four that appear in the formulation, appear as



i

Ai
�wi

�ei,�ei,� = �2A1−4
� w1−4

� + 4A5−8
� w5−8

� ����, �E1�

and



i

Ai
�wi

�ei,�ei,�ei,
ei,�

= 4A5−8
� w5−8

� �����
� + ��
��� + �����
� + �2A1−4
� w1−4

�

− 8A5−8
� w5−8

� ����
�, �E2�

where

A1−4
� = A1

� = A2
� = A3

� = A4
�,

A5−8
� = A5

� = A6
� = A7

� = A8
�,

w1−4
� = w1

� = w2
� = w3

� = w4
�,

and
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w5−8
� = w5

� = w6
� = w7

� = w8
�.

Equation �E2� is isotropic. Based on the D2Q9 lattice, the
condition for Eq. �E2� to be isotropic is 2A1−4

� w1−4
�

−8A5−8
� w5−8

� =0. This leads to w1−4
� /w5−8

� =4A5−8
� /A1−4

� . Other
criteria for the weighting factors is 4�w1−4

� +w5−8
� �=1. Com-

bining these two expressions yields the general form for the
weighting factors as follows:

w1−4
� = 1/�4 + A1−4

� /A5−8
� � , �E3�

and

w5−8
� = 1/�4�4A5−8

� /A1−4
� + 1�� . �E4�

In the derivation of Eq. �40�, it can be shown that

A1−4
� = �0
�c��2 f̄0,1−4���0� , �E5�

and

A5−8
� = �0
�c��2 f̄0,5−8���0� . �E6�
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